16.10. Summary of sorting algorithmsΒΆ
As a convenience, a summary of the key characteristics of the sorts discussed in this chapter are presented in the following table.
\[\begin{split}\begin{array}{llll}
\textbf{Sort} &\textbf{Best Case} &\textbf{Average Case} &\textbf{Worst Case}\\
\hline
\textbf{Comparisons:}\\
\textrm{Bubble} & \Theta(n^2) & \Theta(n^2) & \Theta(n^2) \\
\textrm{Heap} & O(n\log(n)) & O(n\log(n)) & 2n\log(n)+O(n) \\
\textrm{Insertion} & \Theta(n) & \Theta(n^2) & \Theta(n^2) \\
\textrm{Merge} & \Omega(n\log(n)) & \Theta(n\log(n)) & \Omega(n\log(n)) \\
\textrm{Quick} & \Theta(n) & \Theta(n\log(n)) & \Theta(n^2) \\
\textrm{Radix} & \Omega(n\log(n)) & \cdots & \Omega(kn) \\
\textrm{Selection} & \Theta(n^2) & \Theta(n^2) & \Theta(n^2) \\
\textrm{Shell} & O(n\log(n)) & \cdots & O(n^2) \\
\\
\textbf{Swaps:}\\
\textrm{Bubble} & 0 & \Theta(n^2) & \Theta(n^2) \\
\textrm{Heap} & \cdots & \cdots & 2n\log(n)+O(nn)) \\
\textrm{Insertion} & 0 & \Theta(n^2) & \Theta(n^2) \\
\textrm{Quick} & 0 & \Theta(n\log(n)) & \Theta(n^2) \\
\textrm{Radix} & k & \Theta(d(n+k)) & \Theta(d(n+k)) \\
\textrm{Selection} & \Theta(n) & \Theta(n) & \Theta(n) \\
\hline
\end{array}\end{split}\]
More to Explore
TBD
You have attempted of activities on this page