16.8. Heap sort¶
Our discussion of Quicksort began by considering the practicality of using a BST for sorting. The BST requires more space than the other sorting methods and will be slower than Quicksort or Mergesort due to the relative expense of inserting values into the tree. There is also the possibility that the BST might be unbalanced, leading to a \(\Theta(n^2)\) worst-case running time. Subtree balance in the BST is closely related to Quicksort’s partition step. Quicksort’s pivot serves roughly the same purpose as the BST root value in that the left partition (subtree) stores values less than the pivot (root) value, while the right partition (subtree) stores values greater than or equal to the pivot (root).
A good sorting algorithm can be devised based on a tree structure more suited to the purpose. In particular, we would like the tree to be balanced, space efficient, and fast. The algorithm should take advantage of the fact that sorting is a special-purpose application in that all of the values to be stored are available at the start. This means that we do not necessarily need to insert one value at a time into the tree structure.
Heapsort is based on the heap data structure.
Heapsort has all of the advantages just listed.
The complete binary tree is balanced, its array representation is
space efficient, and we can load all values into the tree at once,
taking advantage of the efficient buildheap
function.
The asymptotic performance of Heapsort when all of the records have
unique key values is \(\Theta(n \log n)\) in the best, average,
and worst cases.
It is not as fast as Quicksort in the average case (by a constant
factor), but Heapsort has special properties that will make it
particularly useful for
external sorting algorithms -
used when sorting data sets too large to fit in main memory.
More to Explore
TBD